MK KS	NAME
ML AB	CLASS 12MT or 12MTX
HT	
CF	
MB	
GS	
AM/YR	h Mm.
DH	
WS	

2018

YEAR 12

AP4

MATHEMATICS

Time allowed – 3 HOURS + 5 Minutes Reading Time

DIRECTIONS TO CANDIDATES:

SECTION I: Use the multiple-choice answer sheet provided.

SECTION II:

- Each question is to be commenced in a new booklet clearly marked Question 11, Question 12, etc on the top of the page.
- All necessary working should be shown in every question. Full marks may not be awarded for careless or badly arranged work.
- If you do not attempt a question, you must submit a blank booklet clearly indicating the question number, your name and class
- All questions should be placed in order multiple-choice answer sheet followed by Question 11 to 16.
- > NESA approved calculators may be used.
- > The NESA Reference Sheet is provided.

Section I

10 marks Attempt Questions 1 - 10 Allow about 15 minutes for this section Use the multiple-choice answer sheet for Questions 1 - 10

- 1. Which of the following is a primitive of $\frac{2}{x} \sin x$?
 - (A) $2 \ln|x| + \cos x + C$
 - (B) $2 \ln|x| \cos x + C$

(C)
$$-\frac{2}{x^2} + \cos x + C$$

(D) $-\frac{2}{x^2} - \cos x + C$

- 2. What is the value of $\lim_{x \to 4} \frac{x^2 x 12}{x 4}$
 - (A) 0
 - (B) 4
 - (C) 7
 - (D) 10

3. The domain of the function $f(x) = \frac{x}{\sqrt{x+3}}$ is:

- (A) $x \neq -3$
- (B) x > 3
- (C) x > -3
- (D) $x \ge -3$
- 4. Which expression is a term of the geometric series $4x 8x^2 + 16x^3 ...?$
 - (A) $-2048 x^9$
 - (B) $-2048 x^{10}$
 - (C) 2048 x⁹
 - (D) 2048 x¹⁰
- 5. What is the equation of the tangent to the curve $y = \sin x$ at the point $(\pi, 0)$?
 - (A) y = 0
 - (B) $x y + \pi = 0$
 - (C) $x y \pi = 0$
 - (D) $x + y \pi = 0$

- 6. What is the value of k if the equation $3x^2 + kx 4 = 0$ has -2 as one of its roots? (A) k = 4
 - (B) k = 8
 - (C) k = -4
 - (D) k = -8
- 7. The displacement-time graph of a particle moving in a straight line is as shown.

At which point is the velocity negative and the particle is slowing down?

- (A) P
- (B) Q
- (C) R
- (D) S
- 8. What is the equation of the graph below?

- (A) y = |x 1| 1
- (B) y = |x + 1| 1
- (C) y = 1 |x 1|
- (D) y = 1 |x + 1|

- 9. Which equation represents an odd function?
 - (A) $y = \sin x + \cos x$
 - (B) $y = \sin x \cos x$
 - (C) y = tan x + sec x
 - (D) y = tan x + cosec x

10. The graph of the function $y = sin(\pi x)$ is given below.

How many solutions does $2sin(\pi x) + x = 0$ have?

- (A) 5
- (B) 3
- (C) 1
- (D) None of the above

End of Section I

Section II

90 marks Attempt Questions 11 - 16 Allow about 2 hours and 45 minutes for this section

Answer each question in a separate writing booklet. Your responses should include relevant mathematical reasoning and/or calculations.

Que	estion	11 (15 marks)	Start a new writing booklet	Marks
(a)	Fact	orise $4x^2 + 11x - 3$		1
(b)	lf	$\frac{3}{\sqrt{2}}$ equals $a + b\sqrt{2}$.	Find the values of <i>a</i> and <i>b</i> .	2
(c)	Solv	2x - 1 = 5		2
(d)	Find	the exact value of <i>t</i> a	$\tan \frac{\pi}{6} + \sec \frac{\pi}{4}$	2
(e)	For t (i) (ii)	he arithmetic sequer What is the 30th te Find the sum of the	nce 31, 27, 23, 19, rm? e first 50 terms.	1 1
(f)	The (i) (ii) (iii)	equation $2x^2 + 5x - \alpha + \beta$ $\alpha\beta$ $(\alpha - 1)(\beta - 1)$	$4 = 0$ has roots α and β . Find the values of	1 1 1
(g)				

(i)	Sketch the graph of $y = x^2 - 9$, showing all intercepts.	2
(ii)	Find the area between the curve $y = x^2 - 9$ and the <i>x</i> -axis.	1

End of Question 11

Question 12 (15 marks) Start a new writing booklet Marks (a) For the parabola $x^2 - 6x - 8y - 31 = 0$, Show that $x^2 - 6x - 8y - 31 = 0$ can be written as (i) 1 $(x-3)^2 = 8(y+5)$ by completing the square. Find the focal length. (ii) 1 (iii) Find the coordinates of the focus. 1 (iv) Find the equation of the directrix. 1 Find the equation of the normal to the parabola at the point (11,3). (v) 2

- (b) The graph of the function y = f(x) passes through the point (1,6). If f'(x) = 4x - 5, find f(x).
- (c) In the diagram, the points A(-4,0), B(2,3), C(6,2) and D are vertices of a trapezium.

(i)	Show that the equation of the line CD is $x - 2y - 2 = 0$.	2
(ii)	Given the equation of the line AD is $x + y + 4 = 0$, show that the coordinates of point D are $(-2, -2)$.	2
(iii)	Find the length AB. Give your answer in exact form .	1
(iv)	Find the perpendicular distance from point A to the line CD.	1
(v)	Find the area of the trapezium ABCD if length CD = $\sqrt{80}$.	1

End of Question 12

Question 13 (15 marks)

Start a new writing booklet

- (a) Solve $4sin^2 2x = 3$ for $-\pi \le x \le \pi$
- (b) The function y = f(x) is defined by $f(x) = x^3 + 6x^2 + 9x + 1$.
 - (i) Find any turning points and determine their nature.
 - (ii) Find any point(s) of inflexion.
 - (iii) Sketch the curve, showing all turning points and point(s) of inflexion.
- (c) The table below gives some values for $f(x) = x \log_e x$

x	1	2	3	4	5
f(x)	0		3.33		8.05

- (i) Copy and complete the table of values in your writing booklet.
- (ii) Use Simpson's Rule with these 5 values to find an approximation of

$$\int_{1}^{5} x \log_{e} x \, dx \quad \text{correct to 2 decimal places.}$$

- (d) The region bounded by the graph of $y = x^2$, the *x*-axis and x = 2 is rotated about the *x*-axis. Find the volume of the solid of revolution formed.
- (e) The graph of $y = e^{\frac{x}{2}}$ is shown below.

The shaded region is bounded by $y = e^{\frac{x}{2}}$, the *x*-axis, the lines x = -1 and x = 2. Find the area of the shaded region, correct to 2 decimal places.

End of Question 13

Marks

3

3

1

1

1

2

2

Question 14 (15 marks)

Start a new writing booklet

- Marks
- (a) Mary borrows \$50 000 at 6% compound interest per annum from her bank. She makes \$4000 repayments each year. The amount owed at the end of the *n*th year is A_n .

(i) Show that
$$A_2 = 50\ 000(1.06)^2 - (4000(1.06) + 4000)$$
 1

(ii) Show that
$$A_n = 50\ 000(1.06)^n - \frac{4000(1.06^n - 1)}{0.06}$$
 2

(iii) Find the amount of money Mary owes at the end of 12 years. **1** Give your answer correct to the nearest dollar.

(b) If $log_m a = 1.2$ and $log_m b = 0.5$, find the value of

(i)
$$log_m(ab)$$
 1

(ii)
$$log_m\left(\frac{b^3}{a}\right)$$
 2

(C)

(i) Show that
$$\frac{1}{2x-3} - \frac{1}{2x+3} = \frac{6}{4x^2-9}$$
 1

(ii) Hence find
$$\int \frac{dx}{4x^2 - 9}$$
 and fully simplify your answer. 3

(d)

In the diagram above, CDEF is a rhombus inscribed inside the triangle ABC.

- (i) Prove that $\triangle ADE$ is similar to $\triangle EFB$.
- (ii) Let the side of the rhombus be x units, length BC = 12 units and AD = 2 units. Find the value of x.

End of Question 14

2

Question 15 (15 marks)

Start a new writing booklet

(a) A tank initially containing 500 litres of water, is leaking.

The rate at which water is leaking from the tank is given by $\frac{dV}{dt} = -\frac{1600}{(t+4)^2}$

where V is the volume of water remaining in the tank and t is the time in hours after the water started to leak.

(i)	Find the volume of the water in the tank after 20 hours.	3
(ii)	How much water will be left in the tank eventually?	1

(b) A number of frogs were introduced to an island. The population of frogs after t months is given by $P(t) = Ae^{kt}$, where A and k are constants.

(i) Show that
$$P(t)$$
 satisfies $\frac{dP}{dt} = kP$.

- Five months after the frogs were introduced, their population is now 80% (ii) 2 more than the initial population. Show that k = 0.1176 correct to 4 significant figures.
- (iii) After how many months will the number of frogs first exceed one hundred 2 times its initial population?

The graph above shows the velocity v, in m/s of a particle after t seconds moving in a straight line.

(i)	What is the acceleration when $t = 1$ second?	1
(ii)	When does the particle first change direction?	1

- (iii) What does the area under the curve from t = 0 to t = 2 represent? 1
- (d) A particle that is initially at rest at the origin starts moving along the x –axis.
 - The velocity of the particle at time t is given by $\dot{X} = 12(t t^3)$ ms⁻¹.
 - Once moving, when does the particle come to rest again? 1 (i) 2
 - (ii) Find the distance travelled in the first 2 seconds.

End of Question 15

Question 16 (15 marks)

Start a new writing booklet

- (a) Differentiate with respect to x
 - $tan\frac{x}{3}$ (i)
 - (ii) $sin^4 x$
- (b) Find $\int \sec^2\left(\frac{x-3}{2}\right) dx$

(c) (i) Given
$$y = \sin x^2$$
, find y' 1

(ii) Hence, or otherwise, determine
$$\int x \cos x^2 dx$$
 2

(d)

The diagram shows the graphs of $y = \cos x$ and $y = \sin 2x$. The two graphs intersect at $x = -\frac{\pi}{2}$ and $x = \frac{\pi}{6}$. Calculate the area of the shaded regions.

(e)

A structure is made of two vertical walls and a roof, making an angle θ with the ground. The horizontal distance between the two walls is $21\frac{1}{3}$ metres and the height of the shorter wall is 9 metres.

- Show that the length of the roof is $L = \frac{9}{\sin \theta} + \frac{64}{3\cos \theta}$ (i) 3 3
- (ii) Find the length of the shortest roof.

End of Paper

Marks

1

3

1

HSC Mathematics

AP4 2018

NAME						
CLASS 12 MA		12 M	12 MTX			
Select the a	Iternative A, E	s, C or D tha	t best answ	ers the que	stion. Fill in	the response oval
completely.						
Sample:	2 + 4 =	(A) 2	(B) 6	(C) 8	(D) 9	

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.

 $A \bigcirc B \bigcirc C \bigcirc D \bigcirc$

If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word *correct* and drawing an arrow as follows.

1.	$A\bigcirc$	вО	cO	DO
2.	AO	вО	cO	DO
3.	AO	вО	cO	DO
4.	AO	вО	cO	DO
5.	AO	вО	cO	DO
6.	AO	вО	cO	DO
7.	AO	вО	cO	DO
8.	AO	вО	cO	DO
9.	AO	вО	cO	DO
10.	AO	вО	cO	DO

Question	Marks
1-10	/ 10
11	/ 15
12	/ 15
13	/ 15
14	/ 15
15	/ 15
16	/ 15
Total	/ 100

CTHS MATHS 2U 2018 Trial colutions. NA 2)C 3)C 4)B 5)D 6)A 7)A 8)D 9)D 10)A Da) 4x +1/x-3 $=(4_{x}-1)(x+3)$ b) 8 (5+52) (5-52) (5+52) $=\frac{40+85}{22}$ $=\frac{40}{23}+\frac{8}{23}\sqrt{2}$ $a = \frac{4\rho}{23}, b = \frac{8}{23}$ c) $2\pi - 1 = \pm 5$ $2x = -\psi$ or 2x = 6×=-2 x=3 d) == + J2 $=\frac{\sqrt{3}}{2}+\sqrt{2}$ $= \frac{\sqrt{3}+3\sqrt{2}}{2}$ e)i)a=31 , d=27-3/ d=-4 $\overline{l}_n = a + (n-1)d$ T30 = 31+(30-1)(-4) = -85 $\widetilde{ii}) S_n = \frac{n}{2} [2a + (n-1)d]$ $S_{50} = \frac{50}{2} \left[2(31) + (50 - 1)(-4) \right]$ = -3350

$$a=2, b=5, c=-4$$

f) $\alpha + \beta = -\frac{b}{a}$

$$= -\frac{5}{2}$$

i) $\alpha \beta = \frac{c}{a}$

$$= -\frac{4}{2}$$

$$= -2$$

ii) $(\alpha - 1)(\beta - 1)$

$$= \alpha \beta - \alpha - \beta + 1$$

$$= \alpha \beta - (\alpha + \beta) + 1$$

$$= -2 - (-\frac{5}{2}) + 1$$

$$= \frac{3}{2}$$

9) i)
$$Y = \chi^2 - 9$$

 Y -intocept: $\chi = 0$
 $Y = -9$
 $\chi = -9$
 $\chi = -9$
 $\chi = -9$
 $\chi^2 = 9$
 $\chi = \pm 3$

$$\begin{array}{l} \text{ii} \end{pmatrix} A = \left| \int_{-3}^{3} x^{2} - 9 \, dx \right| \\ = \left| \left[\frac{x^{2}}{3} - 9 x \right]_{-3}^{3} \right| \\ \end{array}$$

= 36 units 2

Alternatively,

$$A = 2 \int_{-\infty}^{3} x^{2} - 9 dx |$$

 $= 2 / \left[\frac{2x^{3}}{3} - 9x \right]_{-\infty}^{3} |$
 $= 2 / \left[9 - 27 \right] |$
 $= 36 \text{ mits}^{2}$

× . .

,

.

c) i)
$$M_{c_0} = M_{AB}$$

 $\frac{y-2}{x-6} = \frac{3}{2-(C4)}$
 $\frac{y-2}{x-6} = \frac{1}{2}$
 $2y-4 = x-6$
 $x-2y-2=0 \longrightarrow GiveN$
ii) Line (D: $x-2y-2=0$ (D)
Line AD: $x+y+4=0$ (2)
(2) -(D): $3y+6=0$
 $y=-2$
Sub $y=-2$ into (D)
 $x-2(-2)-2=0$
 $D = (-2,-2) \longrightarrow GiveN$
iii) $AB = \sqrt{2-(-2)}^{2} + 3^{2}$
 $= \sqrt{45}$ units
 $= 3J5$ units
 $iv_{j} = \frac{1ax_{j}+by_{j}+c}{\sqrt{a^{2}+b^{2}}}$
 $= \frac{6}{\sqrt{5}}$
 $= \frac{6}{\sqrt{5}}$
 $iv_{j} A = \frac{1}{2} (3J5+J80) \times \frac{3}{5}$
 $= \frac{7\sqrt{5} \times 3\sqrt{5}}{5}$
 $= 21$ units²

of
$$M_{AB} = \frac{3-0}{2--4} = \frac{3}{6} = \frac{1}{2}$$

equation of CD // to AB
 $(y-2) = \frac{1}{2}(x-6)$
 $2y-4 = x-6$
 $0 = x-2y-2$ given

ċ

$$\begin{array}{l} 1^{15} a \\ \end{array} \begin{array}{l} 7 + \sin^{2} 2x = 3 \\ \sin 2x = \pm \frac{5x}{2} \\ 2x = \pm \frac{7x}{3} \\ + \frac{2\pi}{3} \\ \end{array} \begin{array}{l} \pm \frac{2\pi}{3} \\ + \frac{2\pi}{3} \\ \pm \frac{2\pi$$

= 3.

(iii) 6) (3,1)(0,1) X (27) (-1,-3) <u>4</u> 3 4 3.33 5.55 <u>yo</u> 2 1.39 c) i) × f(*) 3.<u>3</u> 5.55 8.05 ii) $\int_{1}^{5} \pi \ln x \, dn = \int_{1}^{3} \pi \ln x \, dn + \int_{1}^{5} \pi \ln x \, dx$ $\approx \frac{3-1}{6} \left[0 + 4(1.39) + 3.33 \right] + \frac{5-3}{6} \left[3.33 + 4(5.55) + 8.05 \right]$ OR $\frac{1}{3} \times \frac{5}{4} = \frac{14.16}{10 + 8.05} + 2(3.33\%) + 4(1.39\%) + 4(1.39\%) = 28.31$ (cfr d) $V = \pi \int_{-\infty}^{\infty} y^{2} dm$ $V = \pi \int_{0}^{2} x^{2} dx$ = $\pi \int_{-\infty}^{\infty} \chi^{4} d\alpha$ = 81 $= \pi \left[\frac{x^{5}}{5} \right]^{7}$ $= \frac{32\pi}{5} \text{ mits}^{3} 6.4 \text{ TT}$ OR 20,1 $e) A = \int^{2} e^{\frac{\pi}{2}} dx$ $=2\left[e^{\frac{2}{2}}\right]^{2}$ $= 2[e - e^{-\frac{1}{2}}] =$ ≈-0.79-(2d.p.)-4.22

Question 14

a) i)
$$A_1 = 50000 (1+0.06) - 40000$$

 $= 50000 (1.06) - 40000$
 $A_2 = A_1 \times 1.06 - 40000 \times 1.06 - 40000$
 $A_3 = [50000 (1.06) - 40000] \times 1.06 - 40000$
 $= 50000 (1.06)^2 - 40000 (1.06) - 40000$
 $= 50000 (1.06)^2 - (4000 (1.06) + 40000)$ as required.

(i)
$$A_3 = A_a (1.06) - 4000$$

$$= \left[50000(1.06)^2 - (4000 (1.06) + 4000) \right] (1.06) - 4000$$

$$= 50000 (1.06)^3 - 4000 (1.06)^2 - 4000 (1.06) - 4000$$

$$= 50000 (1.06)^3 - 4000 (1.06^2 + 1.06 + 1)$$

$$= 50000 (1.06)^3 - 4000 (1.06^2 + 1.06 + 1)$$

$$A_{n} = 50000 (1.06)^{n} - 4000 (1.06 + 1.06 + 1... + 1.06 + 1)$$

$$I_{n} = \frac{1}{100} I_{n} = \frac{1}{100$$

$$An = 50000 (1.06)^{n} - 4000 \left[1 \times \frac{1.06^{n} - 1}{1.06 - 1} \right]$$

= 50000 (1.06)^{n} - 4000 (1.06^{n} - 1) as required.

.

iii)
$$A_{12} = 50000 (1.06)^{12} - 4000 (1.06^{12} - 1)$$

,

b) i) logm (ab) = logm a + logmb
=
$$1.2 + 0.5$$

= 1.7

.

(ii)
$$\log m \frac{b^3}{a} = \log m b^3 - \log m a$$

= $3 \log m b - \log m a$
= $3 (0.5) - 1.2$
= 0.3

$$c(i) \underbrace{\frac{1}{2x-3}}_{2x+3} - \underbrace{\frac{1}{2x+3}}_{2x+3} = \underbrace{\frac{1(2x+3) - 1(2x-3)}{(2x-3)(2x+3)}}_{= \underbrace{\frac{2x+3}{2x+3} - 2x+3}_{= \underbrace{\frac{2x+3}{2x+2}}_{= \underbrace{\frac{1}{2x+3}}_{= \underbrace$$

· .

$$= \frac{6}{4x^{2}-9}$$
(i) $\int \frac{dx}{4x^{2}-9} = \frac{1}{6} \int \frac{6}{4x^{2}-9} dx$

$$= \frac{1}{6} \int \frac{1}{2x-3} - \frac{1}{2x+3} dx$$

$$= \frac{1}{6} \times \frac{1}{2} \int \frac{2}{2x-3} - \frac{2}{2x+3} dx$$

$$= \frac{1}{12} \left[\ln |2x-3| - \ln |2x+3| + c \right]$$

•

. .

.

•

$$(5) a) (1) \frac{dv}{dt} = -\frac{1600}{(t+y)^{-1}}$$

$$= -1600(t+y)^{-1}$$

$$V = \int -1600(t+y)^{-1} dt$$

$$= 1600(t+y)^{-1} + C$$

$$V = \frac{1600}{t+y} + C$$

$$V = \frac{1600}{t+y} + C$$

$$V = \frac{1600}{t+y} + C$$

$$C = (00)$$

$$V = \frac{1600}{t+y} + 100$$

$$When t = 20,$$

$$V = \frac{1600}{20+t} + 100$$

$$V = \frac{160}{20+t} + 100$$

$$V = \frac{1$$

iii)
$$P = A e^{0.176t}$$

 $P > 100A$
 $A e^{0.176t} > 100At$
 $0.117t > 100At$
 $t > \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$
 $t > 37.16 = 7.37.2$ also arcepted.
i) $t = 2$
ii) $t = 2$
 $0 = 0.$
ii) $t = 2$
 $0 = 0.$
iii) $t = 0$
 $0 = 12(t - t^{3})$
 $0 = t(1 + t^{3})$
 $1 = 0$
 $0 = 12(t - t^{3})$
 $0 = t(1 + t^{3})$
 $0 = t(1 + t^{3})$
 $0 = t(1 + t^{3})$
 $1 = 0$
 $1 = 12(t^{2} - \frac{t^{3}}{4})^{-1} \left(\frac{1}{2} - \frac{t^{3}}{4} - \frac{1}{4} \right)^{-1}$
The particle corrests next again after 1 second.
ii) Distance taivelled $= \left| \int_{0}^{1} 12(t - t^{3}) dt \right| + \left| 12\left[\frac{t^{3}}{2} - \frac{t^{3}}{4} - \frac{1}{4} \right] \right|$
 $= \left[12\left(\frac{t^{3}}{4} - \frac{t^{3}}{4} \right) - \left[\frac{1}{4} + \left[12\left[\frac{t^{3}}{2} - \frac{t^{3}}{4} - \frac{1}{4} \right] \right]$
 $= 3 + 27$
 $= 30$ m

 $\frac{10}{16} \frac{10}{3} \frac{10}{3} \frac{10}{3} \frac{10}{3} \frac{10}{3} \frac{10}{3} \sec^2(\frac{10}{3})$ ii) $\frac{d}{dx}(\sin^4 x) = 4 \sinh^3 x \cos x$ b) $\int \sec(\frac{\pi-3}{2}) dx = 2\tan(\frac{\pi-3}{2}) + c$ c) i) $\gamma = s_{ih} x^{2}$ $\gamma' = 2 \pi \cos x^{2}$ 11) $\int \pi \cos x^2 dx = \frac{1}{2} \int 2\pi \cos x^2 dx$ $= \frac{1}{2} \sin \chi^2 + C$ d) $A = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos \pi - \sin 2\pi \, d\pi$ $= \left[\sin \chi + \frac{\cos 2\chi}{2} \right]_{-\frac{\pi}{4}}^{\frac{\mu}{6}}$ $= \left[\left(\sin \frac{\pi}{6} + \frac{\cos \frac{\pi}{3}}{2} \right) - \left(\sin \left(\frac{\pi}{2} \right) + \frac{\cos (-\pi)}{2} \right) \right]$ $=\frac{1}{2}+\frac{1}{4}-(-1-1)$ $= 2\frac{1}{4}$ units²

2 fr Cash dr. 1 Sinn +C

$$e(1)$$

$$\frac{1}{21/3} = \frac{9}{1} \qquad L_{1}$$

$$\frac{1}{21/3} = \frac{9}{1} \qquad L_{1}$$

$$\frac{1}{21/3} = \frac{9}{1} \qquad L_{2} = \frac{21/3}{1}$$

$$\frac{1}{21/3} = \frac{9}{1} \qquad L_{2} = \frac{21/3}{1}$$

$$\frac{1}{1} = \frac{9}{1} \qquad L_{2} = \frac{64}{1} \qquad L_{2} = \frac{21/3}{1} \qquad L_{2}$$